RESEARCH ARTICLE

HIGH PLOIDY DIVERSITY IN SACCHARUM SPONTANEUM POPULATION OF NORTH-EAST REGION OF INDIA

V. P. Sobhakumari^{*} and M. Abiraham Stanly

Abstract

Saccharum spontaneum L., a wild relative of sugarcane is the most variable and diverse among the Saccharum species. This species had been successfully exploited in sugarcane improvement programmes and most of the present day commercial varieties are derivatives of interspecific hybrids involving S. spontaneum. Cytological characterization has been done in S. spontaneum accessions collected from five North-East states of India. The cytological characterization of 39 accessions of Mizoram collected during 2004 revealed the presence of 12 cytotypes with 2n= 56, 58, 60, 62, 64, 70, 72, 76, 78, 80, 88, 90. From Tripura and Meghalaya 13 and 17 clones were studied respectively and were showing 4-5 cytotypes. Somatic chromosome number of 91 clones collected from Nagaland and Manipur was determined. It showed that nine different cytotypes were present in this collection. It was found that the diversity of this species is very pronounced in North- East region of India. On the whole it appears that among the chromosome number categories multiples of eight are more common. Among the studied population of S. spontaneum 2n=64 was in majority in all five states. While considering 8 as the basic chromosome number for S. spontaneum the cytotypes of 2n=52, 54, and 58 can be the aneuploids of 2n=56 (7x) with elimination or addition of 2-4 chromosomes. This type of an uploidy may be the reason for the presence of 2n=70, 74 and 76 cytotypes in the same locality. 2n=80 can be considered as a typical cytotype of S. spontaneum for North-East region of the country because in all the North-East states it showed majority next to 2n=64. In general, the pattern of the ploidy level distribution shows that higher ploidy diversity is exist in these collections with more than 12 cytotypes and among them higher ploidy levels like 7X, 8X, 9X, 10X and 11X were present.

Keywords : Saccharum spontaneum, chromosome, cytology, germplasm, polyploids

Introduction

India is one of the major centers of diversity for *Saccharum* species and related genera. *Saccharum spontaneum* has a wider distribution throughout the country, from the sub-Himalayan regions to the peninsular India. The species show extensive variation in terms of morphology and cytotypes. Short bushy types to tall thick types growing to over 7 m in height had been reported from India. Nearly 30 cytotypes of *S. spontaneum* are present in the subcontinent. A major breakthrough in sugarcane improvement was achieved through the use of wild species viz., *S. spontaneum* in

breeding programmes. The first sugarcane variety, Co 205, produced at Sugarcane Breeding Institute, Coimbatore, India was an interspecific hybrid involving *S. officinarum* clone Vellai and wild species *S. spontaneum* clone Coimbatore. This initial success in transferring desirable traits from *S. spontaneum* to cultivated sugarcane led to the systematic collection and maintenance of these species from their distributional areas. Although, exploration and collection of sugarcane germplasm was initiated as early as 1912-1915 by Dr. C. A. Barber at Imperial Sugarcane Breeding Station, Coimbatore, but well organized and systematic

V. P. Sobhakumari* and M. Abiraham stanly

^{*} ICAR- Sugarcane Breeding institute, Coimbatore 641 007, Tamil Nadu State, India

collection of *S. spontaneum* and related genera was taken-up in 1947 under a programme named *Spontaneum* Expedition Scheme (SES) sponsored by Indian Central Sugarcane Committee. A large collection of widely variable forms of this species as a result of the efforts made by Sugarcane Breeding Institute during the last 100 years is being clonally maintained at Coimbatore.

The first comprehensive study of cytogenetics of S. spontaneum was made by Janaki Ammal in a series of papers (Janaki Ammal 1936, 1939; Janaki Ammal and Singh 1936). She postulated the origin of certain chromosome types and found that a polyploidy series exist in this species with x=8 as the basic number. Panje and Babu (1960) summarized 443 clones of S. spontaneum with their location and chromosome number from their own work and from the literature up to 1960. Natural occurrence of 31 cytotypes in S. spontaneum ranging from 2*n*=40 to 2*n*=128, ie. 2*n*=40, 48, 50, 52, 54, 56, 58, 60, 61, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 90, 93, 96, 100, 104, 112, 116, 120, 124, 126 and 128 was established from this study. Time to time the S. spontaneum clones available at world sugarcane germplasm has been subjected to cytological characterization (Sreenivasan 1969, Sreenivasan 1975, Sreenivasan and Sreenivasan 1984, Sreenivasan and Sreenivasan 1994, Sobhakumari and Mallika 2007, Sobhakumari 2009, Sobhakumari 2013). S. spontaneum has been subjected to extensive cytological studies resulting in postulations of several hypotheses regarding its origin, basic number and interrelationship with other species. Cytologically, the species has both euploid and aneuploid chromosome numbers.

S. spontaneum has been extensively used in interspecific hybridization with cultivated sugarcane for producing improved varieties of

sugarcane. During the sugarcane improvement programme this wild species have contributed to resistance to disease and pests, improvement in cane yield through increase in number of millable canes and better ratoonability and expanded the area of sugarcane cultivation by imparting wider adaptability. In view of its importance in sugarcane breeding as source for high productivity and adaptability, efforts made to collect, conserve and characterize S. spontaneum germplasm since 1933. Recently many explorations were conducted at and North-East regions of India. Among these explorations were conducted during 2004 in Mizoram, 2005 in Tripura, 2006 in Meghalaya and 2011 in Nagaland and Manipur. After quarantine these collections are clonally being maintained at ICAR-Sugarcane Breeding Institute, Coimbatore and systematic characterization has been carried out.

This paper describes the cytological characterization of 160 clones of *S. spontaneum* collected from five states of North-East region of India i. e., Mizoram, Tripura, Meghalaya, Nagaland and Manipur. This information will be useful for the effective utilization of these clones in sugarcane improvement programme.

Materials and methods:

The present cytological survey has included 160 clones of *S. spontaneum* collected from Mizoram (39 Nos.), Tripura (13 Nos.), Meghalaya (17 Nos.) and Nagaland and Manipur (91 Nos.) during 2004, 2005, 2006 and 2011 respectively. These clones have been collected from diverse habitats and different altitudes. After quarantine these clones are clonally maintained at the germplasm fields of ICAR-Sugarcane Breeding Institute, Coimbatore.

For cytological studies small clumps of the clones

were planted in pots with soil mixture to collect root tips for mitotic analysis. The root tips were pretreated with saturated solution of α -Bromo naphthalene at 4°C for 2 h, after washing, the roots were fixed in alcohol : acetic acid (3:1) solution and kept at 4°C overnight. Hydrolyzed the roots in 1N HCl at 60°C for 13 minutes and stained in leuco-basic fuchsin for 30 minutes. The squashes were prepared in 1% acetocarmine. In each clone at least 10 well spread metaphase plates were counted for determining the chromosome number. Cells with well spread chromosomes were photographed in Carton CM 402T microsystem.

Results and discussion

The cytological investigations are made in 160 *S. spontaneum* clones collected from North–East region of the country (Table 1 and Fig. 1). The chromosome number has been determined from well spreaded mitotic preparations (Fig.2). Thirty nine clones were collected from Mizoram during 2004. This is the collection which shows more diversity for the cytotypes. Twelve cytotypes were identified in this collection like 2n=56, 58, 60, 62, 64, 70, 72, 76, 78, 80, 88 and 90. Among this 2n=56, 64, 72, 80 and 88 were polyploids with chromosome constitution of 7x, 8x, 9x, 10x

Fig.1. Distribution of different cytotypes of S. spontaneum from North-East states of India

Fig.2. Mitotic metaphase chromosomes in *S. spontaneum* clones (a) IND 04-1374 (2n=56), (b) IND 04-1353 (2n=82), (c) IND 05-1405 (2n=64), (d) IND 05-1410 (2n=72), (e) IND 06-1453 (2n=60), (f) IND 06-1456 (2n=80), (g) IND 11-1685 (2n=80), (h) IND 11-1690 (2n=64)

these may be aneuploids of 8x and 9x polyploids.

Ninety one clones of *S. spontaneum* from Nagaland and Manipur was collected during 2011 were cytologically characterized and nine different cytotypes were identified in this collection. In this collection majority of the clones were with 2n=64 (62%). Clones with 2n=80 were in the next position (22%). 7x and 9x ploidy clones were also present in this area but only in low percentage (3-7%). 2n=54 and 58 may be derived from 2n=56 by addition or deletion of two chromosomes.

Cytological study of clones synthesized by hybridization of different cytotypes suggested that

Table 1. Somatic chromosome number (2n) of
different clones of S. spontaneum from North -
East states of India

Misoram					
Sl.No.	Clone	2n No			
1	IND 04-	70			
2	IND 04-	64			
3	IND 04-	72			
4	IND 04-	80			
5	IND 04-	64			
6	IND 04-	80			
7	IND 04-	64			
8	IND 04-	80			
9	IND 04-	60			
10	IND 04-	58			
11	IND 04-	80			
12	IND 04-	64			
13	IND 04-	56			
14	IND 04-	80			
15	IND 04-	86			
16	IND 04-	60			
17	IND 04-	60			
18	IND 04-	64			
19	IND 04-	64			
20	IND 04-	62			
21	IND 04-	64			
22	IND 04-	76			
23	IND 04-	80			
24	IND 04-	64			
25	IND 04-	56			
26	IND 04-	56			
27	IND 04-	58			
28	IND 04-	56			
29	IND 04-	64			
30	IND 04-	80			
31	IND 04-	78			
32	IND 04-	80			
33	IND 04-	80			
34	IND 04-	80			
35	IND 04-	90			

BIAGAIAMA F. BIAMININ			
37 IND 04-1393 70	Nagaland & Manipur		
38 IND 04-1329 80 Sl.No. Clone	2n		
39 IND 04-1369 56 1 IND 11-1600	64		
Tripura 2 IND 11-1601	64		
Sl. Clone 2n 3 IND 11-1604	56		
1 IND 05-1399 60 4 IND 11-1606	54		
2 IND 05-1400 52 5 IND 11-1608	64		
3 IND 05- 1403 64 6 IND 11-1609	64		
4 IND 05- 1404 60 7 IND 11-1610	64		
5 IND 05- 1405 64 8 IND 11-1611	64		
6 IND 05- 1407 72 9 IND 11-1614	58		
7 IND 05-1410 72 10 IND 11-1619	64		
8 IND 05-1411 80 11 IND 11-1620	64		
9 IND 05- 1413 80 12 IND 11-1622	64		
10 IND 05-1416 64 13 IND 11-1629	64		
11 IND 05-1417 64 14 IND 11-1636	72		
12 IND 05-1419 80 15 IND 11-1637	80		
13 IND 05- 1421 72 16 IND 11-1640	64		
Meghalaya 17 IND 11-1642	64		
SI No. Clone 2n No. 18 IND 11-1643	18 IND 11-1643 80		
Shirto: Clone 211 Ho 1 IND 06 1428 64 19 IND 11-1644	80		
1 IND 06-1428 04 20 IND 11-1645 2 IND 06 1430 64 20 IND 11-1645	64		
2 IND 06-1430 04 21 IND 11-1646	80		
S IND 06-1431 70 22 IND 11-1647	80		
4 IND 06-1432 80 23 IND 11-1648	64		
5 IND 06-1433 64 24 IND 11-1649	80		
6 IND 06-1434 80 25 IND 11-1651	64		
7 IND 06-1437 64 26 IND 11-1653	80		
8 IND 06-1439 64 27 IND 11-1656	64		
9 IND 06-1441 80 28 IND 11-1659	80		
10 IND 06-1443 64 29 IND 11-1660	80		
11 IND 06-1445 64 30 IND 11-1661	80		
12 IND 06-1447 64 31 IND 11-1665	64		
13 IND 06-1451 64 32 IND 11-1666	64		
14 IND 06-1452 60 33 IND 11-1668	80		
15 IND 06-1453 60 34 IND 11-1674	80		
16 IND 06-1455 64 35 IND 11-1675	80		
	61		

37	IND 11-1677	64
38	IND 11-1678	80
39	IND 11-1655	70
40	IND 11- 1615	64
41	IND 11- 1618	64
42	IND 11- 1633	72
43	IND 11- 1634	56
44	IND 11- 1664	64
45	IND 11- 1667	64
46	IND 11- 1683	56
47	IND 11-1597	56
48	IND 11-1603	74
49	IND 11-1616	64
50	IND 11-1624	64
51	IND 11-1625	56
52	IND 11-1626	64
53	IND 11-1627	64
54	IND 11-1630	64
55	IND 11-1632	72
56	IND 11-1638	64
57	IND 11-1641	80
58	IND 11-1652	64
59	IND 11-1654	64
60	IND 11-1669	60
61	IND 11-1673	80
62	IND 11-1679	80
63	IND 11-1681	56
64	IND 11-1682	80
65	IND 11-1683	56
66	IND 11-1686	56
67	IND 11-1687	64
68	IND 11-1689	64
69	IND 11-1690	64
70	IND 11-1692	80
71	IND 11-1693	80
72	IND 11-1694	80
73	IND 11-1697	80
74	IND 11-1699	64
75	IND 11-1700	64

76	IND 11-1701	64
77	IND 11-1702	64
78	IND 11-1969	80
79	IND 11- 1628	64
80	IND 11- 1669	64
81	IND 11-1598	64
82	IND 11-1599	70
83	IND 11-1600	64
84	IND 11-1613	64
85	IND 11-1619	64
86	IND 11-1620	64
87	IND 11-1642	64
88	IND 11-1663	64
89	IND 11-1685	80
90	IND 11-1691	64
91	IND 11-1695	80

natural interspecifichybridizationwereresponsible for the extensive euploidy and aneuploidy in S. spontaneum (Janaki Ammal 1936, Janaki Ammal and Singh, 1936 a; Raghavan, 1953; Kandasami, 1960; Bremer, 1961a, Kandasami and Rao, 1963, Sreenivasan and Jagathesan, 1973). Earlier reports postulated that the 56 chromosome form arose as a hybrid between 2n= 48 and 2n=64 forms (Janaki Ammal, 1936). But in the studied collections 2n=48 cytotype was absent. The 2n=56 cytotype may arose from selfing or intraspecific hybridization of the clones. The reports on selfing of synthetic aneuploids with 2n= 63 chromosomes produced plants with chromosome number ranging from 2n=50 to 2n=110 (Jalaja, 1983), suggested that there was no need to have sympatric distribution of cytotypes for the origin of new forms.

Asia-Africa region including Burma has mostly medium and medium high number 2n=80 to 2n=112. Polyploidy series from the lowest chromosome number of 2n=5x=40 to the highest of 2n=16x=128 in wild *S. spontaneum* occurring

within the country or nearby areas was established (Janaki Ammal, 1939; Panje and Babu, 1960). The extensive studies on chromosome number in *S. spontaneum* widely distributed in South-east Asia and adjoining areas revealed that 8 is the basic number (x=8) in this species. In Mizoram collection twelve cytotypes were identified in this collection like 2n=56, 58, 60, 62, 64, 70, 72, 76, 78, 80, 88 and 90. While considering this we found that natural hybridization between the cytotypes with multiples of 8 (x=8) may be resulted in other cytotypes which are present in less frequency, and a few aneuploids also.

These are some of the possibilities of natural hybridization for getting different cytotypes in Mizoram collection.

Panje and Babu (1960) could substantiate the proposal by Parthasarathy and Subba Rao (1946) that there is an increasing trend in chromosome number from North-West to South–East. The distribution area of *S. spontaneum* is in three principal geographical sectors such as African-Mediterranean area, Indian subcontinent and South-east Asia-cum- Africa region. The first region is characterized by high and medium high chromosome numbers ranging from 2n=104 to

2n=128. The second area which includes India, Nepal, Bangladesh, Pakistan and Sri Lanka has mostly lowest numbers ranging from 2n=40 to 2n=80. In our studies we found that 2n=80 can be considered as a typical cytotype of S. spontaneum for North-East region of the country because in all the North-East states it showed majority next to 2n=64. In our earlier reports on cytological characterization of S. spontaneum from other parts of the continent clones with 2n=80 was rare not available so that 2n=80 cytotype of S. spontaneum may be originated and adapted in the North-East region of the country. The cytotypes with 2n=76, 78, 88 and 90 might been originated from 2n=80 (10x) by natural hybridization. It is also observed that the population percentage of anueploids are less in all the states while compared to polyploids or clones with somatic number of exact multiples of eight.

Among the Saccharum species, the wild S. spontaneum was subjected to detailed studies in India due to its wide distribution, extensive variability in morphology and chromosome number, and most importantly its use in genetic improvement of cultivated sugarcane. The S. spontaneum germplasm collected from different states of the country represent the whole range of variability present in the respective states. The cytological characterization of 160 S. spontaneum clones of five North-East states of India revealed that this region is showing high ploidy diversity for its cytotypes. This high genetic variability is due to its high compatibility between groups and even with other related species and genera. Since this species has the capacity for modification through natural selection and having varying degree of genome constitution with different polyploid groups with high degree of adaptability this identified sources can be utilized in sugarcane improvement programme especially to improve biotic and abiotic stress tolerance.

References

- Bremer G (1961) Problems in breeding and cytology of sugarcane I. A short history of sugarcane breeding The original form of Saccharum. Euphytica 10: 50 78
- Janaki Ammal EK (1936) Cytogenetic analysis of Saccharum spontaneum. L.I. Chromosome studies in some indian forms. Indian Journal of Agricultural Science. 6: 1-8.
- Janaki Ammal EK (1939) Triplo-polyploidy In *Saccharum spontaneum* L. Current Science. 8: 74-77
- Janaki Ammal EK and Sing TSN (1936) A preliminary note on a new Saccharum – Sorghum hybrid. Indian Journal of Agricultural Science. 6: 1105 – 1106.
- Kandasami PA & Rao KSS (1963) Artificially synthesized forms as an induction of the probable origin of certain naturally occurring forms of *Saccharum spontaneum* L. Indian Journal of Sugarcane Research and Development, 8: 25-31.
- Kandasamy PA (1960) Economic characters or triploids of *Saccharum spontaneum* L. and their utilization in sugarcane breeding. Science and Culture. 25: 491-492.
 - Panje RR Babu CN (1960) Studies on *Saccharum spontaneum*. Distribution and geographical association of chromosome numbers. Cytologia 25: 152 172.

- Parthasarathy N, Subba Rao KS (1946)
 Chromosome survey of *Saccharum* spontaneum I. Indian Journal of Genetics.
 6: 5-10.
- Raghavan TS (1953) Some aspects of sugarcane breeding in relation to its cytogenetical peculiarities. Proceedings of Indian Academy of Science. 3: 94-98.
- Sobhakumari VP, Mallika S (2007) A cytological survey of *Saccharum officinarum* and *S. spontaneum* clones. The Nucleus 50 27-32.
- Sobhakumari VP (2013) New determinations of somatic chromosome number in cultivated and wild species of *Saccharum*. Caryologia. 66: 3.268-274.
- Sobhakumari VP (2009) Chromosome survey of wild and cultivated species of *Saccharum*. The Nucleus. 52(1.2): 17-23.
- Sreenivasan TV (1969) Cytogenetic studies in Saccharum and allied genera. Madras University, Dissertation.
- Sreenivasan TV, Jagathesan D (1973) Cytogenetic studies in interspecific hybridsof *Saccharum spontaneum* L. The Nucleus16: 44-48.
- Sreenivasan TV (1975) Cytological studies in Saccharum spontaneum L. Proc. Indian Acad. Sci. 181: 131-144.
- Sreenivasan TV, Sreenivasan J (1984) Cytology of *Saccharum* complex from New Guinea, Indonesia and India. Caryologia, 37: 351-357.
- Sreenivasan TV, Sreenivasan J (1994) Chromosome numbers of *Saccharum* and related grasses. Sugarcane 1: 16-

Received : March, 2018; Revised & Accepted : May, 2018